
Nanotwitter - Team Jia You
Aaron Gold, Julian Ho, Xiangran Zhao
COSI 105b: Software Engineering for Scalability, Pito Salas

Overview

Elastic Load Balancer

Our app server was programmed using Sinatra, which is a domain-specific
language for building websites, web services and web applications in Ruby.
Unlike other alternative Ruby web application frameworks such as Ruby on
Rails, Sinatra is lightweight and focuses on a minimalistic approach to
development. API calls to our nanoTwitter app server will initiate HTTP
requests immediately.

Though designed with canonic Model-View-Controller (MVC) architecture for
our app server, we transferred it to View-Controller (VC) because of the
database we adopted, Dgraph. Dgraph is a distributed, low-latency, high
throughput graph database, which outcompetes other databases in many
aspects. It requires zero or little schema hacks, it’s easier to write
complicated queries in GraphQL+ than in SQL, and it connects entities via
edges but not primary/foreign keys. As a social networking website,
nanoTwitter requires for many complex joins among tables. We chose Dgraph
as our database server because it avoids multiple joins among multiple
tables. Instead, Dgraph collects all the data needed with recursive data
retrieval, ranking and sorting, all in one query. Recursive data retrieval is
essentially an edge traversal starting from a node, which is relatively cheap to
Dgraph. Dgraph minimizes the number of network calls required to execute
queries. The number of intermediate results won’t increase the number of
network calls.

Performance

Redis Caching
In order to limit queries to the database, and increase scalability and
speed for our app, we implemented Redis caching through Amazon
ElastiCache. In general, the keys in the cache are as “username:profile”
and “username:timeline”. These keys map to JSON of all of the user’s
tweets/their followers tweets. Our main method, “Dgraph_or_Redis” first
checks redis for the requested information, and if the key does not exifst,
then it queries Dgraph and updates Redis. Redis is always up to date
thanks to the background worker.

ECS/Fargate Cluster
In order to achieve high scalability while maintaining low
running cost, we chose to build our app on AWS’s Elastic
Container Service (ECS). ECS leverages docker’s container
technology which allows us to quickly deploy, scale up, and
scale down.

To host the containers, we chose to use AWS Fargate over a
regular EC2 instance for even more flexible deployment. AWS
Fargate is a service similar to EC2 which we can deploy and
run our app on. The difference is that Fargate provide us the
flexibility of deploying containers other than deploying
individual machines that run containers. AWS will also
manage the underlying systems that runs your container for
you.

Using Fargate saves us a lot of effort and cost of managing
otherwise full-fledge EC2 machines.

Worker: RabbitMQ
One of the most taxing and thus difficult features for the scaling of our
Nanotwitter app is the action of a user tweeting a new tweet. When an
individual tweets, we must not only update the database for the new
tweet (new hashtags, retweet count, etc), but we must also update the
timelines of every follower. Each individual’s timeline is cached in a redis
server. Therefore, we must update the caching server in order to limit
database queries. Thus, we developed a worker to process and update all
follower’s timelines every time a user tweets. When a user tweets, the
content of the tweet is sent as JSON to a RabbitMQ queue (the monolith
is the producer). The RabbitMQ server, is a micro t2 instance on EC2 and
automatically sends the new tweet information to any queue subscribers.
Therefore, we have two queue subscribers (both on EC2 with a load
balancer) whose main purpose is to complete the intensive process of
updating timelines (aka fanning out tweets). The worker first adds the new
tweet to the database. Next, the worker queries the database and finds all
of the user’s followers. It then expires all of the redis keys for both the
user and his followers and then queries the database for their newly
updated timeline information. From their, it adds these new timelines back
to redis. This ensures that timelines are updated with new tweets
spontaneously than with delay.

NT

Architecture

Functionalities and Frontend Design
Functionalities of our nanoTwitter app:
· User sign up/sign in and sign out
· Follow/unfollow other users
· Post tweets
· Like and comment tweets
· Retweet
· Search
· View profile, timeline and trending tweets

All the functionalities listed above are achieved with Dgraph. New entities
and/or edges are created via mutation on database, and one query on either
profile or timeline is retrieved with one traversal of a node’s edges in the
graph. We also adopted Dgraph’s own full-text search feature to achieve our
search function.

Bootstrap 4 is what we used for our app UI design. Bootstrap-Modal
component is used for creating new tweets, retweeting and commenting. To
avoid the network latency when tweeting, retweeting or commenting, these
functionalities are achieved using AJAX.

Functionality & UI

Auto-scaling cluster group
With the flexibility of ECS and Fargate, we are able to set up
auto scaling that monitors our app performance and scale
up/down accordingly. We have set up many scaling policies
that will scale our app based on CPU/Memory usage, and
traffic throughout.

Currently, our cluster is configured to have 2 Fargate
containers running under normal load. It will scale up every
30 seconds if there is constant heavy load (e.g. Loader.io load
testing).

Team Jia You

To balance our network traffic between multiple app services,
we uses Elastic load balancer that does a round-robin
network load distribution to our ECS cluster. It also
automatically recognize newly created containers (from
auto-scaling) and distribute traffic to it.

Combined with health checks that ELB provides, we were
able to keep our app up time to close to perfect.

Monitoring
We use New Relic to monitor the performance of our app. It provides
various useful metrics like latency, network load, and error rate. This is
the first tool we use for debugging app bugs and unexpected crashes.

nanotwitter.com

